воскресенье, 29 января 2023 г.

                                                            Группа 306 "Математика"

Тема занятия: "Иррациональные неравенства"

При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.

Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.

Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.

Рассмотрим неравенство вида:

Подкоренное выражение должно быть неотрицательным. Функция  может принимать любые значения, необходимо рассмотреть два случая.

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.

Итак, имеем следующую схему решения:

В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.

Пример 1 – решить неравенство:

Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:

Проиллюстрируем:

Рис. 1 – иллюстрация решения примера 1

Ответ:

 

2. Упрощение полученной схемы 

Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:

В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.

3. Неравенства, схема решения  

Рассмотрим неравенство вида:

Аналогично предыдущему неравенству, рассматриваем два случая:

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.

Имеем эквивалентную систему:

 

4. Решение иррациональных неравенств графическим способом 

Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.

Пример 2 – решить неравенства графически:

а) 

б) 

Первое неравенство мы уже решали и знаем ответ.

Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.

Рис. 2. Графики функций  и 

Для построения графика функции  необходимо преобразовать параболу  в параболу  (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.

График функции  – это прямая, ее легко построить. Точка пересечения с осью у – (0;-1).

Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .

Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.

Имеем ответ:

а) ; б) 

5. Решение иррациональных неравенств методом интервалов

Эффективным методом решения иррациональных неравенств является метод интервалов.

Пример 3 – решить неравенства методом интервалов:

а) 

б) 

согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:

теперь необходимо изучить полученную функцию.

ОДЗ: 

Корни: 

Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.

Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:

Рис. 3. Интервалы знакопостоянства к примеру 3

Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.

Проверим значение в граничной точке:

Очевиден ответ:

а) ; б) 

 

6. Неравенства, схема решения, пример

Рассмотрим следующий тип неравенств:

Сначала запишем ОДЗ:

Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:

Получили эквивалентную систему:

Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем:: 

 

Пример 4 – решить неравенство:

Действуем по схеме – получаем эквивалентную систему:

Ответ: 

                           Выполнить упражнения по учебнику:  "Алгебра 10-11 класс

                                           №165, 166, 167 стр 68

 


Комментариев нет:

Отправить комментарий

  29.06.2023 Группа 408 Предмет: Обществознание  Тема урока: Формы государства  Цель урока: изучить данную тему, составить конспект урока.  ...